Human placental cytoplasmic 5'-nucleotidase. Kinetic properties and inhibition.
نویسندگان
چکیده
The kinetic properties of highly purified human placental cytoplasmic 5'-nucleotidase were investigated. Initial velocity studies gave Michaelis constants for AMP, IMP, and CMP of 18, 30, and 2.2 microM, respectively. The enzyme shows the following relative Vmax values: CMP greater than UMP greater than dUMP greater than GMP greater than AMP greater than dCMP greater than IMP. The activity was magnesium-dependent, and this cation binds sequentially with a Km of 14 microM for AMP and an apparent Km of 6 mM for magnesium. A large variety of purine, pyrimidine, and pyridine compounds exert an inhibitory effect on enzyme activity. IMP, GMP, and NADH produce almost 100% inhibition at 1.0 mM. Nucleoside di- and triphosphates are potent inhibitors. ATP and ADP are competitive inhibitors with respect to AMP and IMP as substrates with Ki values of 100 and 15 microM, respectively. Inorganic phosphate is a noncompetitive inhibitor with Ki values of 19 and 43 mM. Nucleosides and other compounds studied produce only a modest decrease of enzyme activity at 1 mM. Our findings suggest that the enzyme is regulated under physiological conditions by the concentrations of magnesium, nucleoside 5'-monophosphates, and nucleoside di- and triphosphates. The nucleotide pool concentration regulates the enzyme possibly by a mechanism of heterogeneous metabolic pool inhibition. These properties of human placental cytoplasmic 5'-nucleotidase may be related to the control of nucleotide degradation in vivo.
منابع مشابه
Isolation and characterization of pigeon breast muscle cytosolic 5'-nucleotidase-I (cN-I).
5'-Nucleotidase specific towards dCMP and AMP was isolated from avian breast muscle and characterized. It was found to be similar to a type-I form (cN-I) identified earlier as the AMP-selective 5'-nucleotidase responsible for adenosine formation during ATP breakdown in transfected COS-7 cells. Expression pattern of the cN-I gene in pigeon tissues indicated breast muscle as a rich source of the ...
متن کاملHigh Km soluble 5'-nucleotidase from human placenta. Properties and allosteric regulation by IMP and ATP.
A human placental soluble "high Km" 5'-nucleotidase has been separated from "low Km" 5'-nucleotidase and nonspecific phosphatase by AMP-Sepharose affinity chromatography. The enzyme was purified 8000-fold to a specific activity of 25.6 mumol/min/mg. The subunit molecular mass is 53 kDa, and the native molecular mass is 210 kDa, suggesting a tetrameric structure. Soluble high Km 5'-nucleotidase ...
متن کاملImmunogold localization of adenosine 5'-monophosphate-specific cytosolic 5'-nucleotidase in dog heart.
Adenosine has a major regulatory function in the heart and many tissues. Our previous work showed that a cytosolic (not a membrane, as previously hypothesized) 5'-nucleotidase from dog heart has the kinetic properties consistent with it being the enzyme responsible for adenosine formation from adenosine 5'-monophosphate (AMP) in response to hypoxia or ischemia. In the present study, we evaluate...
متن کاملRole of membrane-bound 5'-nucleotidase in nucleotide uptake by the moderate halophile Vibrio costicola.
Intact cells of Vibrio costicola hydrolyzed ATP, ADP, and AMP. The membrane-bound 5'-nucleotidase (C. Bengis-Garber and D. J. Kushner, J. Bacteriol. 146:24-32, 1981) was solely responsible for these activities, as shown by experiments with anti-5'-nucleotidase serum and with the ATP analog, adenosine 5'-(beta gamma-imido)-diphosphate. Fresh cell suspensions rapidly accumulated 8-14C-labeled ade...
متن کاملThe membrane topography of ecto-5'-nucleotidase in rat hepatocytes.
The transmembrane topography of the rat hepatocyte ectoenzyme 5'-nucleotidase was studied by the use of glycoprotein labelling and limited-proteolysis techniques. Comparison, by one-dimensional peptide mapping, of enzyme iodinated from outside the cell with that iodinated in the solubilized state showed that no additional iodination sites were revealed on solubilization. Incubation of newly syn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 261 1 شماره
صفحات -
تاریخ انتشار 1986